
CSCI E-51 Final Project Write-Up

Gabriel Chiong

May 2021

Abstract

This document contains the write-up for my CSCI E-51 Final Project
at Harvard University’s Extension School. This project involves imple-
menting a Turing-complete, metacircular interpreter for a subset of the
OCaml programming language. The final project specifications require
implementations of both the substitution and dynamic environment
semantic models for specifying the semantics of the programming lan-
guage. Furthermore, the specification requires that the student imple-
ments extensions to the interpreter, with lexical scoping of the environ-
ment model being a highly recommended option.

For my project, I have implemented both the substitution and dy-
namic environment models, along with several other extensions to the
language: adding additional atomic types and operators, modifying the
environment semantics to to manifest lexical scope, augmenting the syntax
to allow for the curried function definition syntactic sugar, and including
references and mutability to the language.

1 Introduction

The language implemented in this project only includes a subset of OCaml-
like constructs. The two main limitations of this language consist of: limited
support for types (and no user-defined types), and no type inference (only en-
forced during run-time). Despite these limitations, the language implemented
is Turing-complete, which is as capable as any other programming language ac-
cording to the Church-Turing thesis. In the interest of brevity, the programming
language implemented in this project shall henceforth be known as ”MiniML”
within this document, which seems appropriate given the minimal size and lim-
itations of the language.

1.1 Project requirements

The main goal of this project is to implement various forms of interpreters that
vary in the semantics they manifest. It will be based on expressions formed by
the OCaml programming language. This project can be thought of as being
divided into three parts. The first two parts are a hard requirement to im-
plement two different interpreters based on the substitution, and dynamic

1



environment semantics. Following the completion of these two different inter-
preter models, the third and final part of the project requires that the language
be extended to incorporate various different constructs, of which the student
is able to decide which to implement. Within this project, I have decided to
implement the following extensions to MiniML:

1. Add additional atomic types - Float for floats, Str for strings, and the
Unit, for signifying an expression which returns no value. Associated
operators were also included in order to maintain the strong typing char-
acteristic found in OCaml. Extensions were also made to the provided
atomic types in the distribution code such as GreaterThan as a dual to
the provided LessThan, as well as boolean operators And and Or (respec-
tively && and || in OCaml).

2. Implementing lexical scoping as an alternative to dynamic scoping for
the environment model. This includes defining different evaluation rules
for the semantics of the dynamic environment model to more accurately
replicate the behavior of the OCaml programming language.

3. Augmenting the interpreter syntax to allow for the ”syntactic sugared”
version of curried function definition, both for anonymous functions and
for named function definitions. This mainly involved modifying of parsing
rules to identify instances of ”sugared” function definitions.

4. Adding references and mutability functionality - the Ref, Deref, Sequence,
and Assign operators (respectively ref, !, ;, := in OCaml) were added to
to allow for a lexically scoped environment model with mutable storage.
Evaluation rules for mutable storage were also implemented in order to
handle state change.

As the first two parts of the project, substitution and dynamic environ-
ment semantics are implemented based largely on stub code provided in the
distribution files, this write-up will not delve into the specifics of how these were
implemented. This document will mainly contain the details of implementing
the extensions made in the third part of the project.

1.2 Additional functionality

Additional functionalities were added to maintain robust and efficient code, and
separate from the hard requirements of this project. These were a byproduct
of implementing MiniML, and not part of the required functionalities. They
are namely, a comprehensive suite of unit tests and accompanying framework
(the tests.ml file), and a modification to the REPL (the miniml.ml file) to
simplify the process of debugging. These are described briefly in the two short
subsections below.

2



1.2.1 Unit testing framework

In addition to the implementations as described in the previous section, a com-
prehensive testing framework and set of unit tests were developed within a file
named tests.ml, which tests every implemented function thoroughly, while
maintaining code re-usability by running the same tests for substitution, dy-
namic environment, and lexical environment, albeit with differing results
expected where appropriate. The course’s CS51Utils module was chosen as the
unit testing framework rather than using assert statements, as the status mes-
sages are more descriptive, hence debugging would be a simpler process using
CS51Utils, and namely the unit_test function from this module.

1.2.2 REPL extensions

As an aid to debugging while writing the code, and subsequently as a way to dis-
play the features implemented in this project, several changes were made to the
distribution code of the MiniML REPL file miniml.ml. A helper function called
print_res was used to print the results of evaluating different semantic models,
in a similar vein to Professor Shieber’s version in his demonstration video. For
every expression typed into the interpreter, the user is able to see the results
of evaluation from different semantic models: substitution, dynamic en-
vironment, lexical environment, and lexical mutable environment.
Where environment semantics apply, the relevant environment upon expression
evaluation is displayed correspondingly. Similarly, where storage and mutable
semantics apply, the relevant storage environment upon expression evaluation
is displayed.

The two images below illustrates the different values printed for each corre-
sponding semantics model.

Figure 1: The REPL display for anonymous function definition where no state
change effects are needed.

As observed in Figure 1, where no operators for state change is defined,
all four semantics are shown, along with their corresponding environments (if
applicable), denoted by E[...], and the store is empty in this case (denoted by
S[...]). However, in Figure 2, state change is present. The substitution, dy-
namic environment, and lexical environment, are undefined and throws

3



Figure 2: The REPL display for anonymous function definition where state
change is present.

an EvalError. The lexical mutable environment however, handles this
by displaying the environment, which maps relevant variables to their locations
in the environment E[...] and the location to their value in S[...]. The case of
anonymous functions was used as an example to highlight the differences be-
tween the different REPL values printed, and the same principles apply to other
constructs within the language which are affected by environments and stores,
for example Let statements.

2 Additional atomic types

The first extension made to the MiniML language was adding additional atomic
types. I decided to add floats, strings and the unit, along with some of their
frequently used operators in native OCaml. As these were new constructs for
MiniML, changes to the lexer and parser files were required. In addition to this,
the expr.mli, expr.ml, and evaluation.ml files would need to be updated as
well. These are described in the subsections below.

2.1 Lexer changes

The lexer for MiniML is written using a program called ocamellex and is con-
tained within the file miniml_lex.mll. In order to maintain a strong, static
typing regime for MiniML similar to native OCaml, additional operators were
introduced into the sym_table hashtable where needed (such as differentiating
between arithmetic operators for ints and floats).

For floats, the symbols +., -., *., and ~-. were added as a dual to the
operators from the given integer type, Num. No rule changes were needed for
parsing these symbols, as they had already been introduced into the sym_table

hashtable. However, an additional parsing rule was needed to handle expres-
sions involving float values. It works similarly to what was implemented in the
distribution code for Nums, and is in effect, a combination of integers with a ’.’
character within or at the end of the expression.

For implementing the string atomic type, the concatenation symbol ^ was
first added to the sym_table hashtable, and a definition of strings was added us-

4



ing regular expressions as let string = [’"’] [^’"’]* [’"’], which allows
any character between the two quotation marks, except for another quotation
mark. An additional parsing rule was added for strings, in which I had to re-
move the quotation marks using OCaml’s Str module for regular expressions
and string manipulation.

The unit was the easiest out of the three additional atomic types to include.
It simply consisted of adding the unit symbol, () to the sym_table hashtable,
and a simple parsing rule for whenever that symbol is encountered.

As a minor improvement to comparison operators, I added the ”greater than”
operator, the > symbol as having only a < operator did not feel right, intuitively
speaking. The boolean operators ”and” (&&) and ”or” (||) were also added to
the sym_table, as well as the not keyword to the keyword_table hashtable for
inverting boolean values.

2.2 Parser changes

The parser for MiniML is written in a program called menhir and is contained
within the file miniml_parse.mly. Tokens for values and their operators, as
well as their precedence rules were added accordingly, with care taken to im-
plement an order which is consistent with native OCaml. The grammar of the
language was also updated to include the newly introduced atomic types, but
these changes are trivially based on the structure of existing grammar rules.
These can be best understood by reading through the miniml_parse.mly file
therefore, this document will not be covering the parser for newly introduced
atomic types.

2.3 Expressions and evaluation changes

Within the expr.mli and expr.ml files, the type definitions for floats, strings
and units were added to the existing ones. Similarly, the float operators, com-
parison operator and boolean operators introduced were added to the type def-
initions for binop and unop. FNegate for float negation, and Not for boolean
negation were added to the unop type. FPlus, FMinus, and FTimes as float
operators, Concat as a string concatenation operator, GreaterThan as the com-
parison operator, and And and Or as the boolean operators were added to the
binop type definitions.

The float atomic type was introduced as Float of float, strings are added
as Str of string, and units as a Unit. As these newly introduced constructs
are atomic types, the free_vars and subst functions within the expr.ml file
did not require excessive modification. Similarly, functions to produce string
representations of both the abstract tree syntax and concrete syntax were triv-
ially updated to include these new atomic types. In the same vein, updating the
evaluation.ml file was largely a mechanical exercise, with trivial differences to
the existing atomic types. Overall, this was perhaps the simplest extension to
the project to implement.

5



3 Lexical scoping

Native OCaml is itself, lexically scoped. This is in contrast to the dynamic
environment implemented in the first part of the assignment. The main dif-
ference between the two types of environment semantics is that lexical envi-
ronment semantics ”capture” the lexical environment at the time of function
definition for use when the function is applied. Dynamic environment se-
mantics do not store the lexical environment at function definition, and applies
the dynamic environment during function application. Lexical environment
semantics are consistent with the result for substitution semantics. The dif-
ferences are perhaps best illustrated by the following expression.

let x = 1 in

let f = fun y -> x + y in

let x = 2 in

f 3 ;;

In this expression, we would expect a dynamically scoped semantics model to
evaluate to a value of 5 as the environment in play during function application
contains the mapping of x 7→ 2. However, the substitution and lexical
environment models should return a value of 4, since the lexical environment
at the point of function defintion contained the mapping of x 7→ 1. Conceptually,
the notion of capturing the lexical environment at the time of function definition
for later use during function application can be implemented as a ”closure” data
structure, which contains an expression and its lexical environment.

Implementation-wise, there are only minor changes to the dynamic seman-
tics from the first part of the project, with the most significant being the evalu-
ation of Letrec. However, adding lexically scoped evaluation rules was largely a
mechanical exercise in applying rules from the CSCI E-51 course. In the interest
of succinctness, I have defined a new type, type model = Dynamic | Lexical,
along with a common helper function to carry out evaluation of an expression
depending on the type of model passed in as an argument to the function in the
file evaluation.ml. The heading of the function is as follows:

let eval_env (exp : expr) (env : Env.env) (model : model)

: Env.value =

...

During function application, the eval_env function checks the type of the
model passed in as an argument, in order to determine whether to manifest the
dynamic or lexical environments in evaluating a result. This helper function
eliminates significant amounts of repeated code, as the eval_d and eval_l

functions can now be written with a single line of code.

(* Dynamically-scoped environment model evaluator *)

let eval_d (exp : expr) (env : Env.env) : Env.value =

eval_env exp env Dynamic ;;

6



(* Lexically-scoped environment model evaluator *)

let eval_l (exp : expr) (env : Env.env) : Env.value =

eval_env exp env Lexical ;;

With these changes added to the evaluation.ml file, the interpreter is now
able to evaluate expressions in the substitution, dynamic environment,
and lexical environment model settings, as seen in the image below. The
substitution evaluation rules return a result of 4, consistent with the lexical
environment rules. As expected, the dynamic environment rules return a result
of 5. The mutable environment is also lexically scoped, hence it returns a value
of 4, but a more detailed documentation of the environment for mutable storage
is provided in the succeeding sections.

Figure 3: Comparison of evaluation results from the different semantics imple-
mentations, where the dynamic environment is the odd one out.

4 Syntactic sugar

The third extension to this project is adding syntactic sugar for function defi-
nition. Syntactic sugar is additional syntax which serves to abbreviate a more
complex construction. Not only does the syntactic sugar implemented in this
project’s extension for function definition simplify the need for constructs like
let f = fun x -> ... to let f x = ..., but it also simplifies curried func-
tion definition (multiple argument functions for a programming language based
on Alonzo Church’s Lambda Calculus).

(* Non-syntactic sugared function definition with currying *)

let f =

fun x ->

fun y ->

fun z ->

...

(* Syntactic sugared function definition with currying *)

let f x y q -> ...

Likewise, this notion of syntactic sugar for curried function definition also
applies to anonymous functions.

7



(* Non-syntactic sugared anonymous function with currying *)

fun x ->

fun y ->

fun z ->

...

(* Syntactic sugared anonymous function with currying *)

fun x y z -> ...

The only change required for this extension is located within the MiniML
parser, miniml_parse.mly. This was the most challenging extension to im-
plement, although the total number of lines of code needed was perhaps the
shortest of all extensions.

Within the grammar rules section, the rules for LET, LET REC, and FUN would
need to be changed from ID, which is a single variable, to multiple variables in
order to account for syntactic sugared curried function definition. A new rule
was needed to account for multiple variables, rather than a single variable. This
new rule was named as vars, to signify that it represented multiple variables.
The most basic OCaml construct for composite types, a list, was used to define
this new rule. Utilising the concept of forming composite data types by alter-
nation, vars could either take the form of a single variable, or more than one
variable, from which the parser would interpret as the user wishing to use the
sugared version of curried function definition.

With the grammar rules established, the most difficult part of this exten-
sion was in determining how to represent a list of variables as their abstract
tree syntax form for evaluation. Eventually, this was implemented using helper
functions written in OCaml within the header of the parser file, to deconstruct
the list - variable by variable, and form a nested abstract tree syntax expres-
sion for evaluation. Within the header of the miniml_parse.mly file, the two
functions uncurry_fun and uncurry_let fulfill the role of deconstructing the
variable list into the relevant abstract tree syntax. Since these functions return
an abstract tree syntax expression, the grammar rules for LET, LET REC, and FUN

were changed to use these helper functions, rather than manually constructing
the abstract tree syntax, as was originally done for single argument functions.

As a simple demonstration, the following concrete syntax can be entered into
MiniML’s interpreter, with the results shown in the images below:

let intofbool b =

if b then 1

else 0 in

intofbool true ;;

let rec fact n =

if n = 0 then 1

else n * fact (n - 1) in

fact 10 ;;

8



let x = 10 in

let f y = fun z -> z * (x + y) in

let y = 12 in

f 11 2 ;;

let f x y z = x + y * z in

f 2 3 4 ;;

Figure 4: Syntactic sugar for single argument functions.

Figure 5: Syntactic sugar for single argument recursive functions.

Figure 6: Syntactic sugar used together with single argument function definition.

As an aside, Figure 7 shows the dynamic environment throwing an error
stating that the y variable is unbound during evaluation. This is the expected
behaviour of the dynamic environment semantics model as the function is
returned outside of the environment in which y is defined. In the lexical environ-
ment, the y is available but in the dynamic environment, there is no mapping for
y. There are various ways to fix this, namely defining a value for the y variable

9



Figure 7: Syntactic sugar with multiple arguments function definition.

prior to function application, however this is outside the scope of the discus-
sion in this section. This is the reason most modern programming languages
implement lexical scoping rather than dynamic scope.

Unfortunately, due to time limitations for this project, I was unable to
add functionality for no-argument functions, in the vein of fun () -> ...,
let f () = ..., or even fun _ -> .... This is proposed to be the scope of
future extensions to make this language more expressive.

5 References and mutability

The final extension implemented in this project is to implement references for
mutable storage. In native OCaml, references are created using the ref key-
word, dereferencing using the ! operator, sequencing using the ; operator, and
assignment using the := operator. Conceptually, the difference between the lex-
ical environment for functional programming and imperative programming only
differ by their semantics, and that the concept of mutable storage requires an
additional ”environment” called a store. In terms of implementation within this
project, the evaluation of expressions containing the impure constructs above
utilize a dual-environment method, while the other environments (substitution,
dynamic, and lexical) raise errors signifying that their semantic rules do not
handle impure programming constructs.

The Env module used to create environments for the dynamic and lexical
environments from the first part of the environment is re-used for the store
environment. With mutable storage, the expressions are effectively evaluated
within using an environment which maps variables to their location in memory,
and a store which maps a location to a value. The semantic rules for handling
each atomic type and construct are slightly different to the lexical environment
rules, and have been implemented mechanically as according to the provided
rules from the CSCI E-51 course.

5.1 Lexer changes

The lexer file miniml_lex.mll did not require significant changes other than
adding the keyword ref to the keyword_table hashtable, and the symbols !,
:=, and ; to the sym_table hashtable. The parsing rules are able to handle

10



these additional constructs in its current state.

5.2 Parser changes

Again, the changes were almost trivial within the parser file miniml_parse.mly.
Tokens for each operator were added accordingly, along with their associativity
rules - carefully implemented to replicate the behaviour of native OCaml. The
grammar rules were also modified to include the newly introduced operators,
with the best description of this probably being to look into the code itself.

5.3 Expression and evaluation changes

These impure constructs were implemented into the expr.mli and expr.ml

language expression files by extending the expr type definition. Creating a
reference was implemented as Ref of expr, dereferencing was implemented as
Deref of expr, assignment was implemented as Assign of expr * expr, and
sequencing was implemented as Sequence of expr * expr. The functions for
converting abstract syntax trees and concrete syntax to their string representa-
tions were trivially updated to handle these new constructs.

As substitution, dynamic, and lexical environment semantics are not
well-defined to handle state change, functions such as free_vars, subst, eval_s,
and eval_env merely raised an EvalError once these constucts were encoun-
tered. The evaluation rules for a lexically scoped environment with mutable
state are implemented within a function called eval_e in the evaluation.ml

file. As described in the preceding paragraphs, evaluating an impure expression
requires two environments, one of them being the store. Hence, the function
header for the eval_e function would need to be different from those used in
previous sections for a functional programming language. In addition to an ad-
ditional store environment argument, the returned value would need to be an
Env.value (which could be either a single value, or a closure of a value and an
environment), paired with a Env.env (the store). This resulted in the following
header for the eval_e function:

let rec eval_e (exp : expr) (env : Env.env) (store : Env.env)

: Env.value * Env.env =

...

As a simple demonstration, the following concrete syntax can be entered into
MiniML’s interpreter, with the result shown in the image below:

let x = ref 3 in

x := 42;

!x ;;

As seen in Figure 8, the substitution, dynamic environment, and lexical en-
vironment semantics raise errors as they are ill-equipped to handle state change.
However, the lexically scoped environment handling state change correctly re-
turns the value 42 and the store environment.

11



Figure 8: Expression involving mutable state and the results of evaluation.

To illustrate the difference between the environment and the store returned
from evaluation of impure expressions, the following example is offered. The
REPL is designed to print the results of the store only when an atomic value
is returned, keeping consistent with the evaluation rules from the CSCI E-51
course. However, for functions the result is a closure of the function, along with
its lexical environment and store. Hence the REPL prints the environment as
well in Figure 9, rather than just the value and a store, as seen in Figure 8 when
the return value is an atomic type.

let z = ref 3 in

fun x -> x := z; !x ;;

Figure 9: Example illustrating how the environment and store work in tandem
for evaluating impure expressions.

Owing to time pressures in completing this project, I was not able to spend
sufficient time to figure out how to implement the chained use of the dereference
operator cleanly like native OCaml. For example in MiniML, the expression
below needs to implement the dereference operator with white space between the
parentheses, which is different to native OCaml where the following is possible:
...!(!a), with no whitespaces between the expression symbols. Therefore, this
is a topic suggested for future extension to this project.

let a = ref 3 in

let b = ref 5 in

let a = ref b in

! ( !a ) ;;

12



6 Conclusion

This document contains a detailed description of the various extensions made to
my CSCI E-51 final project, which was to implement a metacircular interpreter
for a limited set of constructs based on the OCaml programming language. The
first two parts of the assignment to implement substitution and dynamic
environment semantic models are not described in great detail within this
document, as the purpose of this document is solely to provide a description of
the extensions. Within the time given to complete this project, the following
extensions were successfully made:

1. Adding additional atomic types

2. Lexical scoping

3. Syntactic sugar for curried functions

4. References and state change

These extensions were implemented by modifying the lexer file miniml_lex.mll,
the parser file miniml_parse.mly, the expression files expr.mli and expr.ml,
and the evaluator file evaluation.ml. As a byproduct of implementing these
extensions, a comprehensive suite of unit tests were developed for every func-
tion written within the file tests.ml, as well as a modification to the REPL file
miniml.ml to display the evaluation results of different semantic models.

Due to the time constraints of this project, the two main limitations for
the extensions implemented are the lack of no-argument functions, and not
being able to chain dereference operators cleanly like native OCaml. A detailed
overview of these limitations can be found in their relevant subsections within
this document. These topics are proposed for future investigation and extensions
to this project.

13


