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This document contains the accompanying write-up to my implementation of Strassen’s divide and
combine matrix multiplication algorithm for n by n matrices. The goal of this experiment was to deter-
mine the optimal crossover point at which the base case of the recursive Strassen’s algorithm is invoked.
Specifically, the base case uses the conventional method of matrix multiplication on the subproblems of
Strassen’s divide and combine strategy. In the context of this experiment, the optimal crossover point is
defined to be the matrix dimension size that allows Strassen’s algorithm to outperform the running time of
the conventional matrix multiplication method. This experiment includes both analytical and experimental
analysis when comparing the running times of both methods.

Our implementation of Strassen’s matrix multiplication in this experiment also provides an efficient
method to count the number of triangles in random graphs. A triangle is defined to be a length-3 cycle in
an undirected graph. As part of this experiment, we also investigate the relationship between the number
of triangles in a random graph and the probability of including an edge in the graph. Using Strassen’s
matrix multiplication speeds up the computation of counting random triangles, as will be detailed in further
sections of this document.

Overview

The complete implementation for this experiment is separated into the main program (main.cpp), and
the two sets of header and implementation files (strassen.h, strassen.cpp, random_triangles.h, and
random_triangles.cpp). There is also a bash script time.sh to automate the collection of running times
and crossover points for a number of trials, a Makefile to automate the compilation of these different files,
and a suite of unit tests to verify correctness of the implementation on some toy examples (tests.cpp).
Some of these unit tests are carried out on matrices with randomly generated entry values (Strassen’s
method versus the conventional algorithm), and others test our implementation’s correctness against open-
source libraries for matrix multiplication, such as Python’s numpy library. The instructions to execute the
program can be found in the file README . md.

Separate to this is a directory called analytical_analysis/ which contains my analytical anal-
ysis to determine the crossover point, and uses a simple Python program to numerically check this
(numerical_crossover.py). There is also a directory which contains random input matrices for unit
testing called test_input/. It contains both the input values for the matrices to be multiplied, and the
expected result of the matrix multiplication. A wide range of matrix dimensions and entry values are
included for testing.

The design choices for this experiment will be elaborated upon in further detail in later sections, but a
summary of our considerations are provided here as reference. Our implementation uses pass-by-reference
functions whenever possible to minimize the amount of memory allocation and deallocation. Pointers (or
indices) into matrices are used to minimize the amount of memory allocation and deallocation. Also, writing
cache-friendly code by exploiting locality of reference is used to optimize matrix operations. Lastly, the
padding strategy to handle matrix dimensions that are non-powers of two is carefully considered, although
this experiment does not focus on the details of comparison between different padding strategies.



Analytical Crossover
Mathematical Analysis

We begin by using analytical methods to determine the optimal crossover point for Strassen’s matrix
multiplication algorithm. We carry this part of the investigation out in two stages: one where we assume
that the dimension of the matrix n is an even number, at least until it reaches the crossover point, and the
other n is odd. The accounting model of our analytical analysis attributes a cost of 1 to any arithmetic
operation (adding, subtracting, multiplying, or dividing two real numbers), and all other operations are
free. We will now attempt to find the optimal size ng to use for Strassen’s algorithm using empirical
means, such that the number of operations will be less than that of the conventional one for sufficiently
large original problem sizes.

The number of arithmetic operations to compute the conventional matrix multiplication is n?(n 4 n —
1) = n?(2n — 1). The n? term comes from the number of entries of each matrix, and each entry is the
dot product of a row and column of the input matrices, which are n integer multiplications and n — 1
additions (and subtractions). On the other hand, Strassen’s algorithm for matrix multiplication can be
defined by the recurrence T'(n) = 7T(n/2) + 18(n/2)%. This is because the algorithm recursively divides
the original matrix into sub-matrices of dimension n/2, and uses a further seven recursive calls. Apart
from the recursive calls, there are a total of 18 pairwise matrix addition and subtraction operations, each
of which is applied on a matrix with (n/2)? entries.

Since we seek to determine the crossover point where the number of operations of the conventional al-
gorithm is greater than the number of operations by Strassen’s algorithm, we can write this mathematically
as follows:
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We can thus conclude that the matrix dimension at which the conventional algorithm begins to exceed
that of Strassen’s algorithm in terms of the number of operations is when n > 15, so our crossover point is
ng = 16. However, we have made an important implicit assumption about n in our mathematical analysis,
namely that it is an even number. To determine the crossover point for n as an odd number, we can pad the
input matrices with a row and column of zeroes, so the input matrices have a dimension of (n+1) x (n+1).
As we did in the case when n was even, we again write this mathematically as follows:
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Where we obtained the final line using a free online numerical computing tool and verified with hand
calculations after. We can therefore conclude that in the case that n is odd, the matrix dimension at
which the conventional algorithm begins to exceed that of Strassen’s algorithm in terms of the number of
operations is when n > 37.17, so our crossover point is ng = 38 when n is odd.

Numerical Analysis

To confirm our results from our mathematical analysis, we wrote a simple program in Python to
calculate the number of operations using the same equations, and trialed it on a range of values for
n. The number of operations for the conventional matrix multiplication algorithm was calculated in the
straightforward way as before, and the number of operations for Strassen’s algorithm was calculated using
a recursive function, based on the recurrence stated in the previous section. We compare the number
of operations needed by the conventional matrix multiplication, Strassen’s matrix multiplication with a
crossover ng = 16 when n is even and ng = 38 when n is odd (let us call this “Crossover Strassen” for
brevity), and another variant of Strassen’s algorithm which only invokes the base case at ng = 1 (let us
call this “Pure Strassen” for brevity). The results are presented below in Table 1, where the last column
states whether Crossover Strassen uses less operations than the other two methods.

From the Table 1, it is clear that our mathematical analysis appears to agree with our numerical anal-
ysis. For Pure Strassen, it easily takes the most number of operations starting at n = 2 and remains higher
consistently by what seems to be an increasing rate. Comparing the conventional matrix multiplication to
Crossover Strassen, the number of operations remain equal from n = 2 to n = 17 since these values of n
are below the crossover point for the Crossover Strassen algorithm. However, once we reach n = 18, the
crossover point defined for even numbers in the Crossover Strassen algorithm, we see that the number of
operations for conventional matrix multiplication is higher (11340 versus 11097). From the table of results,
it can be observed that the conventional algorithm no longer performs better than the Crossover Strassen
algorithm for even numbers. It is a similar situation for odd numbers, except the crossover point is when
n = 38, and from then on, the conventional algorithm does not do better than the Crossover Strassen
algorithm for any number of n. We provide Figure 1 below to highlight the observed trends until n = 200
which seems to agree with our findings.
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Figure 1: Comparing the number of operations until n = 200.



n | Pure Strassen | Conventional | Crossover Strassen | Crossover Strassen Faster?
2 |25 12 12 No
3 | 247 45 45 No
4 | 247 112 112 No
5 | 1891 225 225 No
6 | 1891 396 396 No
7 | 2017 637 637 No
8 | 2017 960 960 No
9 | 13687 1377 1377 No
10 | 13687 1900 1900 No
11 | 13885 2541 2541 No
12 | 13885 3312 3312 No
13 | 15001 4225 4225 No
14 | 15001 5292 5292 No
15 | 15271 6525 6525 No
16 | 15271 7936 7936 No
17 | 97267 9537 9537 No
18 | 97267 11340 11097 Yes
19 | 97609 13357 13357 No
20 | 97609 15600 15100 Yes
21 | 99373 18081 18081 No
22 | 99373 20812 19965 Yes
23 | 99787 23805 23805 No
24 | 99787 27072 25776 Yes
25 | 108049 30625 30625 No
26 | 108049 34476 32617 Yes
27 | 108535 38637 38637 No
28 | 108535 43120 40572 Yes
29 | 110947 47937 47937 No
30 | 110947 53100 49725 Yes
31 | 111505 58621 58621 No
32 | 111505 64512 60160 Yes
33 | 686071 70785 70785 No
34 | 686071 77452 70949 Yes
35 | 686701 84525 84525 No
36 | 686701 92016 83511 Yes
37 | 689761 99937 99937 No
38 | 689761 108300 97470 Yes
39 | 690463 117117 107991 Yes
40 | 690463 126400 112900 Yes
41 | 703549 136161 125234 Yes
42 | 703549 146412 129874 Yes
43 | 704323 157165 144222 Yes
44 | 704323 168432 148467 Yes

Table 1: The number of operations needed for two variants of Strassen’s and the conventional algorithm.



Experimental Crossover

In this section, we first discuss some of the key ideas and implementation considerations when writing
our program for this experiment. This includes software design choices and optimizations of both the
conventional matrix multiplication algorithm and Strassen’s divide and combine algorithm. Following the
implementation overview, we proceed to present the results of our experiment.

Implementation Considerations and Optimizations

One idea for practical improvement to our program was to use pointers (indices) into matrices to carry
out operations, rather than initializing a smaller sub-matrix with identical values. Specifically, we aimed
to minimize the amount of memory allocation and deallocation our program uses, by operating on the
original matrix using pointers to delineate the extent of the sub-matrix operation. This is in contrast to an
alternative approach which initializes a smaller matrix, copies over the relevant entries from the original
matrix, carries out the desired operations on the smaller matrix, then copies over the result entries back
into the original matrix. Although we could not figure out a way to completely do without allocating
temporary sub-matrices in our program, we minimized it as much as possible. This idea was used for all
matrix operations, including both Strassen’s algorithm and the conventional algorithm.

An efficiency-related idea we implemented for our program in general was to use pass-by-reference
functions where possible, in order to reduce the amount of copying large blocks of data. For matrix
operations such as addition, subtraction, and the conventional multiplication method, matrices are passed
by reference, including both the input matrices and the result matrix. For Strassen’s algorithm, the same
idea is used, so both multiplicand matrices and the result matrix are passed in as arguments by reference
(and consequently for further recursive calls as well).

We found it challenging to identify significant improvements to the conventional matrix multiplication
algorithm in terms of reducing its asymptotic complexity. However, there is a well-known practical way to
speed up the conventional matrix multiplication in a computer program, which is to loop over the matrices
in a way that exploits locality of reference better. For matrices of sufficient size that span over multiple
cache lines, we can reduce the number of times the CPU has to load new data into cache by ensuring the
the way matrix entries are accessed are in the order in which they are present in memory. Please refer to
our implementation in the file strassen.cpp for the specific loop order.

We now proceed to describe a specific optimization to our implementation of Strassen’s algorithm
for matrix multiplication. The question is how to handle matrices which have dimensions that are not a
power of two? The key insight is that it is unnecessary to pad the matrix to the next largest power of
two dimension!. Rather, if we encounter a matrix dimension which is not a power of two, we pad it to a
dimension which can be cleanly divided by two until it reaches the specified crossover point. For example,
given a 1599 x 1599 sized matrix and a specified crossover point of 25, it suffices to pad one extra row
and column only since we can reach the crossover point cleanly from there, after which the conventional
matrix multiplication algorithm is used. An alternative to this padding strategy is the “lazy” approach,
where a matrix with odd dimension is padded on-demand with a single row and column to make the
dimensions even before carrying out each divide and combine step. We elected not to use the alternative
padding strategy, as we hypothesize that the computational cost of doing a one-off larger 2D-array resize at
the start of the computation outweighs the cost of potentially executing multiple smaller 2D-array resizes
during the recursive calls. Due to the time constraints of this assignment, we were unable to compare
between the two padding strategies, but it would be an interesting area for further investigation.

'"Higham, Nicholas J. (1990). ”Exploiting fast matrix multiplication within the level 3 BLAS” (PDF). ACM Transactions
on Mathematical Software. 16 (4): 352-368.



Results and Analysis

Having discussed the various implementation considerations and optimizations in the previous subsec-
tion, we now present the results of our experiment to determine the optimal crossover point ng. To find
the optimal crossover point, we tried matrices with uniformly random entry values between 0 and 65536
for matrix dimensions n = 2,...,499. For each dimension, we systematically try crossover points from
ng = 2,...,min(n, 100). We chose a limit of 100 conservatively based on our analytical results estimating
the crossover point to be less than 50. For each crossover point trialed, we averaged the running time of the
conventional matrix multiplication algorithm and Strassen’s algorithm over five iterations each to minimize
the variance in running time results due to external factors (e.g. other concurrent programs running on
our computer during the execution of our algorithm). We reported the first crossover point that allowed
Strassen’s algorithm to outperform the conventional algorithm for each matrix dimension trialed. Our
result table is nearly 500 rows long, so we have not included it in this report, but is available for viewing
within the sub-directory (output/strassen.xlsx) of our submitted repository for this assignment.

Rather than the tabular results from our experiment (for reasons described above), we will present
and analyze them using the following graphs below. Figure 2 shows the difference in running times of the
conventional algorithm against Strassen’s algorithm as the dimensions of the input matrices increase. It is
observed that the conventional algorithm begins faster (or takes time at most) compared to Strassen’s al-
gorithm for smaller dimensions, and for all crossover points, until n & 100, after which Strassen’s algorithm
seems to gradually outperform the conventional algorithm and have a lower running time. From inspecting
the actual value of our result table, we see that the first crossover point at which Strassen’s algorithm
outperforms the conventional algorithm is at n = 114 and a crossover point of ng = 59. Furthermore, the
rate at which the difference grows between the two algorithms appears to increase with n. The fact that
we can observe Strassen’s algorithm outperforming the conventional matrix multiplication algorithm as
the dimensions of the matrix grow large is a positive sign for the correctness of our implementation, since
in theory we expect Strassen’s algorithm to outperform the conventional algorithm asymptotically.
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Figure 2: Comparing the expected number of triangles against the actual number counted for a range of
probabilities.

To determine our optimal crossover point ng, we present Figure 3, which displays the crossover point
for each dimension of the matrix. As discussed in the preceding paragraph, the conventional algorithm
outperformed Strassen’s algorithm for all crossover points trialed until n = 114, so we do not report any
crossover points for n < 114. We observe that the crossover points consistently fall within a range of



no = 28,...,99 as the matrix dimensions grow large (the exact values were read from our table of results).
An interesting observation is that the optimal crossover point appears to decrease as the matrix dimension
grew. The crossover point for matrix dimensions between 100 and 200 are greater than 50, but for matrix
dimensions between 400 and 500, the crossover point was around the 35 + 5 mark. From these results,
it appears that the asymptotic nature of the crossover point seems quite similar to our analytical results,
which gave a crossover point of ng = 38 for odd-dimension matrices. We speculate that with further
experiments for matrices of larger dimensions, we might even observe an eventual crossover point closer to
the ng = 16 mark, as given by our analytical analysis for even-dimension matrices.
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Figure 3: Comparing the expected number of triangles against the actual number counted for a range of
probabilities.

As a side experiment, rather than using random values between 0,...,65536 for our input matrix
entries, we repeated the experiment with random values of 0 and 1 instead. The results of this are
stored in the file output/crossover_01.txt. The first instance of Strassen’s algorithm outperforming the
conventional algorithm was lower at n = 87, and a crossover point of ng = 50, though the timings of each
algorithm remained largely the same when compared to using random values between 0,...,65536. This
suggests that the lower crossover point value may have been due to variance in running times of trials,
rather than anything of interest.

To conclude this section, we take the average over all the crossover points found for the dimensions
where Strassen’s algorithm outperforms the conventional algorithm, which we suggest as our optimal
crossover point. This value is ng = 57 (out of interest, the median crossover point was 55). We speculate
that this crossover point could be lowered with more trials on matrices with larger dimensions, perhaps
an interesting topic for further investigation in the future. However, we note that it would be unrealistic
for our implementation to match the results of the analytical analysis, since we assumed that the cost
of all operations other than integer arithmetic were free. Although useful theoretically since it greatly
simplifies analysis, this is not practical when measuring running times in reality, as there is a real (time
and power) cost to executing instructions other than integer arithmetic on a computer. Allocating and
deallocating memory to represent large matrices in our program are one such example of an expensive op-
eration not considered by our analytical analysis. Despite this, it is clear from the results of our experiment
that Strassen’s algorithm is useful in practice since modern methods in scientific computing and artificial
intelligence definitely use matrices with dimensions greater than 100 x 100.



Counting Triangles in Random Graphs

As an aside to our investigation into the optimal crossover point for Strassen’s divide and combine
matrix multiplication algorithm, our implementation of Strassen’s algorithm allows us to experiment with
finding triangles in random graphs. This section describes the results of counting the number of length-3
cycles (triangles) in a random graph, and how this changes with the probability p that an edge is present
in the graph. These two ideas are linked since the entry indexed by row ¢ and column j of the adjacency
matrix raised to the n*® power gives us the number of length n paths from vertex i to vertex j. We therefore
compute the third power of the adjacency matrix and sum the values in the diagonal. It is important to
remember that summing the entries of the diagonal in the straightforward way over counts the number of
triangles by a factor of six, since each vertex of a triangle is counted twice in either direction of the cycle.

To carry out this experiment, we fix the value of p to be one of the values in the set of probabilities
{0.01,0.02,0.03,0.04,0.05}, and compare the output using our algorithm for Strassen’s matrix multipli-
cation to the empirical formula for the expected number of triangles, given by (10324)}73. Since we use a
pseudorandom number generator in our program to determine whether an edge exists, we take the average
over fifteen trials to minimize the influence of any one trial. From Table 2 and Figure 4 shown below, the
difference between the expected number of triangles and the actual number of triangles counted by our
program lie between 0.11% and 1.06%. In fact, the results were so similar that it is somewhat difficult
to see the two sets of values in the displayed graph. We can thus conclude that our implementation of

Strassen’s algorithm appears to be accurate.

D Expected (empirical) | Actual Observed | Absolute Difference (%)
0.01 | 178.43 178.20 0.13
0.02 | 1427.46 1412.50 1.06
0.03 | 4817.69 4823.15 0.11
0.04 | 11419.71 11464.00 0.39
0.05 | 22304.13 22400.30 0.43

Table 2: Comparing the differences between the empirical formula and the results from our implementation.
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Figure 4: Comparing the expected number of triangles against the actual number counted for a range of
probabilities.



Conclusion

In summary, we have used two different methods to identify the optimal crossover point ngy for
Strassen’s matrix multiplication algorithm. Firstly, the analytical analysis carried out suggests a value
of ng = 16 for even-dimension matrices, and ny = 38 for odd-dimension matrices. This was confirmed
using a simple numerical analysis using those crossover points to simulate the number of operations using
each matrix multiplication algorithm.

On the other hand, our experimental analysis suggested a crossover point of ng = 57. This was from
using a brute-force approach to try the entire range of matrix dimensions until n = 500, with increasing
crossover points to check if there was a crossover point which would allow Strassen’s matrix multiplication
algorithm to outperform the conventional algorithm. As discussed in the previous sections, we believe
that it is possible to further reduce the crossover point found by Strassen’s algorithm by averaging in the
results of matrices with higher dimensions, but that it would not be possible to do as well as the analytical
analysis. The main reason for this lower bound is that the analytical model considered all other operations
outside of matrix multiplication to be free.

In this experiment, we also investigated the behavior of triangles in random graphs since our im-
plementation of Strassen’s algorithm provided an efficient way to multiply matrices. We found that
our results correlated well with the expected number of triangles over all the specified probabilities
0.01,0.02,0.03,0.04,0.05, calculated using empirical means. This reinforced confidence in our implemen-
tation of Strassen’s matrix multiplication algorithm.

Taking the results of both our analytical and experimental analysis together, it is clear that Strassen’s
algorithm does have a place in the modern computing world. The textbook Algorithms in C (1990 edition)
was perhaps somewhat over-exuberant in downplaying the practicality of Strassen’s algorithm, since our
analytical and experimental analysis have shown that it offers a speed advantage over the traditional
algorithm over relatively smaller values of n. The claim that n would have to be in the thousands before
Strassen’s algorithm becomes useful does not appear to agree with the results of the experiment we have
carried out. Our experiments have shown that Strassen’s algorithm offers an advantage once we reach
dimensions of n ~ 100. Furthermore, in the problems encountered in the modern day in scientific computing
and artificial intelligence use matrices with dimensions that are significantly larger than this, and so the
benefits of using Strassen’s algorithm grows asymptotically too!

That being said, it is difficult not to discount the effect that computing hardware has on executing
programs in the real world. The actual time and power cost of running various operations can differ greatly
depending on the computer architecture (for example, the same instruction can take different number of
CPU clock cycles on different architectures). Therefore, it is understandable that the experimental analysis
carried out on computers in 2023 may have had wildly differing results to say computers in 1990.

We now provide some scope to further develop the results from this experiment in the future. Firstly,
we would be interested to know if there are more efficient padding strategies than the one used in our
implementation. Specifically, a comparison with the “lazy” padding strategy described in the preceding
sections. Secondly, although we believe it is possible to lower the suggested crossover point from the
experimental analysis through carrying out further trials on matrices of higher dimensions, this has not
been shown from our results. Therefore, we would be interested to know if running the experiment further
on larger sized matrices would further reduce the averaged crossover point (and what would be the lower
bound of this?). Lastly, it would be interesting to compare the crossover points generated by different
computer architectures, not just in the modern day but computers in the 1990. This might provide some
context into the aforementioned claim that lies at the heart of our experiment.



