
CS 124 Programming Assignment 1: Spring 2023

Your name(s) (up to two): Gabriel Chiong

Collaborators: None

No. of late days used on previous psets: 0
No. of late days used after including this pset: 0

This document contains the accompanying write-up to my implementation of a Minimum Spanning
Tree (MST) algorithm for complete, undirected, and random graphs. The goal of this experiment was to
investigate how the average weight of the MST grows as a function of n. The experiment was carried out
on four different variations of the complete, undirected, and random graph:

• Complete graphs on n vertices, where the weight of each edge is a real number chosen uniformly at
random in the interval [0, 1].

• Complete graph on n vertices where the vertices are points chosen uniformly at random inside a unit
square (the weight of an edge is the Euclidean distance between two x and y coordinates).

• Complete graph on n vertices, where the vertices are points chosen uniformly at random inside a unit
cube (3 dimensions), and edge weights determined by the Euclidean distance between two vertices.

• Complete graph on n vertices, where the vertices are points chosen uniformly at random inside
a hypercube (4 dimensions), and edge weights determined by the Euclidean distance between two
vertices.

Overview

The complete implementation for this experiment is separated into the main program (randmst.cpp),
and the three sets of header and implementation files (random_graph.h, random_graph.cpp, prims.h,
prims.cpp, min_heap.h, and min_heap.cpp). There is also a bash script (time.sh) to automate the
collection of running times and average MST weights for a number of trials in each dimension, a Makefile

to automate the compilation of these different files, and a suite of unit tests to verify correctness of my
implementation on some toy examples (tests.cpp). The instructions to execute the program can be found
in the file README.md.

We have decided to use an adjacency list to represent the graph. Although a complete graph has Θ(n2)
edges which makes adjacency list and adjacency matrix asymptotically (both time and space-wise) equal for
the purposes of our implementation, an optimization which will be described in a later section will provide
a performance enhancement for the adjacency list data structure. To generate random real numbers over
a uniform distribution, I decided to use the Mersenne Twister pseudorandom number generator over more
conventional options from the C++ library, for reasons which will also be described in a later section.

My implementation of Prim’s MST algorithm uses a binary heap to determine the next vertex to
be explored. One small space optimization I made to my binary heap implementation was to allow an
“eager” insert(key, vertex) operation, which essentially decreases the priority (distance) of a vertex
without re-inserting a separate copy with a lower key. To do this, I maintained a collection of pointers
to element positions in the heap. It is possible to obtain better run times using a Fibonacci Heap, but
through profiling my program, the bottleneck was not my implementation of Prim’s MST algorithm, but
constructing the graph data structure. Therefore, I decided against spending time to further optimize
Prim’s MST algorithm and my binary heap implementation in favor of other improvements.

1

Graph Pruning

Other than the minor optimization to the binary heap’s insert(key, vertex) operation, the most
effective method of optimizing this program is the pruning of edges from the complete tree. The idea is
that when constructing the complete, undirected, random graph, we will not include edges with weight
beyond a certain threshold, k(n), where the threshold is a function of the number of vertices n. The crux
of this optimization is to choose a k(n) such that the total MST weight is no different than when without
pruning the graph. Since a MST is a tree which only includes edges of minimal weight, a complete graph
will have many redundant edges of higher weights which are effectively unused. These higher-weight edges
can be discarded without affecting the total MST weight.

There are
(
n
2

)
= Θ(n2) edges in a complete graph, so assuming that an edge is represented by 16 bytes,

a graph with 262, 144 vertices would require in excess of one terabyte to store. This is simply impractical
for some modern computers, and can also be impossible to store on older hard disk drives. Even if we
were to simplify our representation of edges to a single floating point type of four bytes, it would still take
around 275 gigabytes to represent the same graph. Graph pruning would not improve this for adjacency
matrices, so it can be challenging to use for complete graphs as n increases to large numbers. This is also
the reason why I have decided to use an adjacency list representation.

To determine the appropriate k(n) to use, we run our program to find the average MST weight of
complete graphs with small values of n. We also keep a measure of the average edge weight, and maximum
edge weight in the graph, for different dimensions 0, 2, 3, 4. We recorded the time taken to run our program
on a complete graph to compare the magnitude of runtime improvement once we include our optimization,
as described in a later section. Since we included all Θ(n2) edges for this part of the investigation, we
could only check these values for graphs with n ≤ 8192. The following results were obtained by averaging
the results over five trials, to four decimal places.

Dimension n Time (s) Avg. Edge Weight Max. Edge Weight Avg. MST Weight

0

128 0.0015 0.4981 0.9999 1.1008
256 0.0035 0.4989 0.9999 1.1371
512 0.0099 0.5002 0.9999 1.1984
1024 0.067 0.5000 1.0000 1.2315
2048 0.342 0.4999 1.0000 1.2253
4096 1.427 0.5000 1.0000 1.1904
8192 6.495 0.4999 1.0000 1.2047

2

128 0.0006 0.5337 1.3218 7.5850
256 0.0021 0.5127 1.3051 10.6616
512 0.0085 0.5242 1.3665 15.0130
1024 0.0677 0.5209 1.3749 20.9991
2048 0.3291 0.5209 1.3858 29.7674
4096 1.3982 0.5228 1.3975 41.7826
8192 6.3833 0.5021 1.3951 58.9967

3

128 0.0006 0.6622 1.4830 17.6765
256 0.0021 0.6688 1.5245 27.7794
512 0.0094 0.6633 1.5763 43.7326
1024 0.0670 0.6626 1.5700 68.0662
2048 0.3239 0.6627 1.6391 107.1110
4096 1.3738 0.6643 1.6563 169.8030
8192 6.4295 0.5519 1.6738 266.8760

2

4

128 0.0006 0.7758 1.5875 28.4530
256 0.0021 0.7795 1.6902 46.9175
512 0.0082 0.7763 1.7069 78.1144
1024 0.0647 0.7778 1.7484 129.7120
2048 0.3268 0.7780 1.7845 217.3800
4096 1.3669 0.7782 1.8377 361.4590
8192 6.3237 0.6484 1.8502 603.4870

Table 1: Results without graph pruning.

Armed with the knowledge of these results, we then employ a trial and error approach to estimate
appropriate values of k(n) by discarding edges of weights greater than k(n), when constructing a graph.
Our implementation throws a runtime error if Prim’s MST algorithm was unable to reach all vertices,
which signals if we might have been too liberal in our discarding of edges. At each stage, we compare the
average MST weight found with the complete graph of all edges to ensure that the average MST weight
stayed the same. On a side note, the average edge weight for the 0-dimension graph is roughly 0.5 across
all values of n trialed, which is a positive sign for our choice of pseudorandom number generator (since the
0-dimension case is when the edge weight is chosen uniformly at random over the real numbers from 0 to
1). The following table shows the final functions k(n) we will use for our graph simplification.

Dimension k(n)

0 8n−0.8 − 0.00025

2 2.1n−0.45

3 2.3n−0.3 − 0.013

4 2.8n−0.276

Table 2: Threshold functions for a given n on each dimension.

Other Implementation Details

The two most popular algorithms for finding a MST are Prim’s and Kruskal’s algorithms. Prim’s has
a time complexity of O(|E| log |V |) when paired with a binary heap, which is O(|V |2 log |V |) for a complete
graph with |V |2 edges. Kruskal’s algorithm has a time complexity of O(|E| log |E|) = O(|V |2 log |V |2) =
O(|V |2 log |V |) for a complete graph, with a factor of 2 hidden by the big-O notation. When recording run
times in practice, it may be prudent to also consider constant factors. Although they have equal asymptotic
run times for a complete graph, when used on graphs with more edges than vertices (i.e. |V | ≤ |E|), Prim’s
algorithm should have a better practical performance, since it is less dependent on the number of edges.
It is for this reason that we have chosen to use Prim’s algorithm for our implementation.

To continue our discussion on the benefits of the Mersenne Twister pseudorandom number generator
over the more well-known std::rand(), we note the relatively good “uniform” results obtained in the
previous section for the average edge weight in a 0-dimension graph (approximately 0.5). Although the
details are not included in this write-up, when swapping out the Mersenne Twister generator for something
based on std::rand(), we found a skew towards lower numbers. In addition to this benefit provided by
the Mersenne Twister for our use case, reading the documentation for std::rand() also revealed its other
disadvantages - low randomness of lower-order bits, a short period, and the low value of RAND_MAX (the
range of values at which it generates random numbers). We have therefore chosen to use the Mersenne
Twister generator for our implementation.

3

Results and Analysis

The following section presents the results of our program on the different dimensions and number
of vertices of the graph. Note that these results include the graph pruning technique to speed up the
simulation. We begin with a description of the machine used to compile and run the program.

Machine Specifications

The following results were obtained using a MacBook Pro with the Apple Silicon M1 chip and 16GB
of memory. Even though the Apple Silicon M1 chip is based on the ARM architecture, our code was
compiled to target a x86-64 instruction set. Although we have found through some trial and error that
it is possible to obtain faster running times when compiled directly for the ARM instruction set, we have
decided to continue with compiling for a x86-64 system due to it being more ubiquitous, and therefore
having a higher chance of obtaining more reproducible results outside of our own machine.

Running Times with Optimizations

With the optimizations provided in our previous section, we now provide the running times for different
values of n and dimensions for each graph. The results below were averaged over five trials, and are
presented in seconds, to four decimal places. There is a clear improvement in time taken when compared to
Table 1. Where a graph of size n = 8192 used to take 6 seconds without optimizations (for all dimensions),
it now takes less than 1 second. In fact, apart from the 0-dimension graph which took 167.6 seconds on a
graph with 262, 144 vertices, all other dimensions with 262, 144 vertices took under one minute.

Dimension

n 0 2 3 4

128 0.0007 0.0002 0.0004 0.0010

256 0.0012 0.0004 0.0007 0.0018

512 0.0024 0.0009 0.0017 0.0027

1024 0.0051 0.0021 0.0039 0.0046

2048 0.0145 0.0054 0.0096 0.0114

4096 0.0497 0.0157 0.0259 0.0328

8192 0.1884 0.0511 0.0789 0.0831

16384 0.7372 0.1840 0.2510 0.2540

32768 2.8408 0.6953 0.8724 0.8393

65536 11.2875 2.7424 3.0340 3.0319

131072 43.5603 10.6255 11.2835 11.5163

262144 167.6000 41.4627 42.6170 42.9668

Table 3: Running times with optimizations, in seconds.

From the results of this table, it appears that the 0-dimension graph is the slowest of the four types
of graphs. We hypothesize that it is more about implementation detail, rather than being specific to the
algorithm or graph structure. Since the edges of the 2, 3, 4-dimension graphs are calculated as a Euclidean
distance, the random graph vertex point values are first generated in a vector and this allows the C++
compiler more freedom to optimize. However, the 0-dimension graph is constructed by simply generating
random weights and assigning it to each edge in sequence, which limits the optimization freedom of the
C++ compiler. A graph of the running times are provided below for reference.

A polynomial of degree two appears to fit the data quite well, which correlates with our hypothetical
runtime, since we require that each pair of vertices be considered for placing an edge. Even though an

4

Figure 1: Running time versus the number of vertices, and a polynomial trendline of degree two.

edge might not be placed in the final form of the graph due to our pruning of higher-weight edges, the
construction of the graph still requires that each edge between a pair of vertices be considered. This
dominates the running time of Prim’s Algorithm, which is log-linear, and we have a useful sanity check for
our implementation.

0-Dimension Results

The results of the experiment for the 0-dimension graph are presented in the table below. Each value
of n was trialed five times and the reported result is the average over the five trials.

n Average MST Weight

128 1.37112

256 1.20854

512 1.21125

1024 1.20013

2048 1.20768

4096 1.20211

8192 1.21539

16384 1.19972

32768 1.20407

65536 1.20386

131072 1.20199

262144 1.20237

Table 4: The average dimension-0 MST weight for given n, averaged over five trials.

From these results, it is clear that the average weight of the MST does not appear to change as n
increases, for 0-dimension graphs. Furthermore, the weight of the MST is very similar to the results from a
graph without pruning the higher-weight edges in Table 1, so we have good confirmation that our function

5

Figure 2: Average dimension-0 MST weight versus the number of vertices.

k(n) for the 0-dimension case has not been overly rash in discarding edges. Using the graph of results in
Figure 2, we can confidently suggest that the total MST weight as a function of n in the 0-dimension case
can be modeled by f(n) = 1.2 when n grows large. We believe that a constant function f(n) represents
the best fit for the results since there is minimal change in f(n) as n increases. Figure 2 confirms our
observations from the table of results.

It does appear strange that the MST weight would not increase with an increasing number of vertices,
and this could be a topic for further investigation outside the scope of this experiment. However, one
could imagine that with an increasing number of vertices, there are a larger amount of very small edge
weights that are retained (while the higher-weighted ones are discarded anyways) and this contributes to
maintaining a constant MST weight, even as n increases.

2-Dimension Results

The results of the experiment for the 2-dimension graph are presented in the table below. Each value
of n was trialed five times and the reported result is the average over the five trials. From the results in
Table 5, the average MST weight appears to increase with increasing n, for 2-dimension graphs. Also, the
average MST weights appear to be quite similar to the results without optimization from Table 1, so it
seems that our choice of k(n) for the 2-dimension case has not been overly rash in discarding edges.

We used a trial and error approach in conjunction with some suggestions from Microsoft Excel to
fit different trendlines onto the results we have obtained, and the best fitting function to model the total
MST weight as a function of n was f(n) = 0.65

√
n. This trendline is shown in Figure 3. From this, we

can observe that the asymptotic growth rate of the total MST weight f(n) is sublinear in the number
of vertices. This result is more in line with our expectations that the weight of the MST would increase
with the number of vertices, since the number of edges in the graph also increase. Also, we expect that
dimension-2 graphs would have higher edge weights compared to dimension-0 graphs since dimension-2
edge weights are chosen in the interval [0,

√
2]. As expected, when compared with the MST weights of

the 0-dimension graph, the MST weights for the 2-dimension graph are larger, with the smallest being
approximately 7.65 (when n = 128), compared to the constant value of 1.2 in the 0-dimension graph.

6

n Average MST Weight

128 7.6534

256 10.7343

512 15.0747

1024 21.0580

2048 29.6319

4096 41.9484

8192 59.0455

16384 83.2291

32768 117.405

65536 166.036

131072 234.686

262144 331.716

Table 5: The average dimension-2 MST weight for given n, averaged over five trials.

Figure 3: Average dimension-2 MST weight versus the number of vertices.

7

3-Dimension Results

The results of the experiment for the 3-dimension graph are presented in the table below. Each value
of n was trialed five times and the reported result is the average over the five trials.

n Average MST Weight

128 17.3588

256 27.7157

512 43.1013

1024 67.9202

2048 107.492

4096 168.859

8192 267.254

16384 422.801

32768 669.084

65536 1058.58

131072 1677.7

262144 2657.73

Table 6: The average dimension-3 MST weight for given n, averaged over five trials.

From the results in Table 6, the average MST weight appears to increase with increasing n. Also, the
average MST weights appear to be quite similar to the results without optimization from Table 1, so it
seems that our choice of k(n) for the 3-dimension case has not been overly rash in discarding edges.

Again, we used a trial and error approach in conjunction with suggestions from Microsoft Excel to
fit different trendlines onto the results, and the best fitting function to model the total MST weight as a
function of n was f(n) = 0.7n0.66. This trendline is shown in Figure 4. From this, we can observe that the
asymptotic growth rate of the total MST weight f(n) is sublinear in the number of vertices. This result is
in line with our expectation for the same reasons outlined in the section for the 2-dimension case.

Figure 4: Average dimension-3 MST weight versus the number of vertices.

8

4-Dimension Results

The results of the experiment for the 4-dimension graph are presented in the table below. Each value
of n was trialed five times and the reported result is the average over the five trials.

n Average MST Weight

128 28.2784

256 47.2223

512 77.8771

1024 130.696

2048 216.834

4096 361.491

8192 602.84

16384 1008.47

32768 1688.12

65536 2829.55

131072 4742.31

262144 7948.04

Table 7: The average dimension-4 MST weight for given n, averaged over five trials.

From the results in Table 7, the average MST weight appears to increase with increasing n. Also, the
average MST weights appear to be quite similar to the results without optimization from Table 1, so it
seems that our choice of k(n) for the 4-dimension case has not been overly rash in discarding edges.

Again, we used a trial and error approach in conjunction with suggestions from Microsoft Excel to
fit different trendlines onto the results, and the best fitting function to model the total MST weight as a
function of n was f(n) = 0.78n0.74. This trendline is shown in Figure 5. From this, we can observe that the
asymptotic growth rate of the total MST weight f(n) is sublinear in the number of vertices. This result is
in line with our expectation for the same reasons outlined in the section for the 3-dimension case.

Figure 5: Average dimension-4 MST weight versus the number of vertices.

9

Conclusion

In summary, we have found the following functions as a suitable way to model the MST weight of a
graph as the number of vertices increase. For 0-dimension random graphs, the function f(n) = 1.2 appears
to be a good fit for our results. For 2-dimension random graphs, the function f(n) = 0.65

√
n seems to

be a good fit for our results. For 3-dimension random graphs, the function f(n) = 0.7n0.66 appears to be
a good fit for our results. For 4-dimension random graphs, the function f(n) = 0.78n0.74 seems to be a
good fit for our results. In general, for dimensions that are greater than or equal to two, it is observed
that functions of the form f(n) = anb, for some real numbers 0 ≤ a, b ≤ 1, appear to be a good fit for our
results. Furthermore, it appears that a, b appear to grow with the dimension of the graph.

From our results, the running time of the program seems to be dominated by the time taken to
construct the graph. Our implementation of Prim’s Algorithm and its accompanying priority queue were
(predictably) swallowed by the time taken to construct the graph. This was also observed by profiling our
running program for various values of n and dimensions. It was interesting to implement a variation of
the priority queue that allowed for insert(key, vertex) to change priorities of elements that are already
in the heap, based on the suggestion in the lecture notes to maintain a collection of pointers to element
positions in the heap.

This experiment has also taught us an important lesson in using pseudorandom number generators,
something we have previously taken for granted. It seems like they are not all created equal, and generators
like the Mersenne Twister should be the preferred choice over the classical std::rand(). As described in
previous sections, using the std::rand()-based engine resulted in a skew towards lower numbers, while
the Mersenne Twister engine provided a fairer distribution of numbers.

A further optimization that we would have been keen to implement if we had more time, is to parallelize
the edge construction of the random graph. We have found through profiling that this was the bottleneck
in terms of running time, so targeting this area for improvement would have been an interesting exercise
to pursue. We carried out a minimal spike to investigate the benefits of using multithreading to construct
the adjacency list of the graph, and found approximately 2x improvement in running time when compiled
to an ARM instruction set. Interestingly, the same code compiled to a x86-64 instruction set saw slightly
increased running times (granted, the implementation might not have been perfect). Since we had decided
to orientate this experiment towards the x86-64 system for reasons outlined in the previous sections, we
did not pursue this interesting line of enquiry further.

10

